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Linear Equations

Example:
3x1 + 4x2 = 8, the solution is not unique.

Problem:

Given y ∈ Rm, A ∈ Zm×n (typically, m� n)

Find a solution x ∈ Rn, that satisfies Ax = y

x is as sparse as possible

min
x
‖x‖0 s.t. Ax = y (1)

Solution:
min
x
‖x‖1 s.t. Ax = y (2)

min
x

(‖Ax− y‖22 + λ ‖x‖1) (3)

Zhifei Zhang (Tongji Univ.) Variants of RBMs Nov. 27, 2013 4 / 39



Revisit Sparse Coding Restricted Boltzmann Machines Variants of Restricted Boltzmann Machines Applications in NLP

Sparse Coding [Olshausen and Field, VR 1997]

Given data X ∈ Rd×n, learn a dictionary D ∈ Rd×k encoding A ∈ Rk×n

(k > d) which satisfies X ≈ DA (x =
k∑
i=1

aiφi).

An overcomplete basis set is better able to capture structures and patterns
inherent in the input data.

The coefficients ai are no longer uniquely determined by the input vector
x. Thus, introduce an additional criterion of sparsity which means that
each x is explained by few codewords.
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Sparse Coding vs PCA
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Cost Function

min
a
(j)
i ,φi

n∑
j=1

∥∥∥∥∥x(j) −
k∑
i=1

a
(j)
i φi

∥∥∥∥∥
2

+ λ

k∑
i=1

S(a
(j)
i ) (4)

where S(ai) = ‖ai‖1 or S(ai) = log(1 + ‖ai‖22).

It’s possible to make the sparsity penalty arbitrarily small by scaling down
ai and scaling φi up by a large constant.

min
a
(j)
i ,φi

n∑
j=1

∥∥∥∥x(j) −
k∑
i=1

a
(j)
i φi

∥∥∥∥2 + λ
k∑
i=1

S(a
(j)
i )

s.t. ‖φi‖22 ≤ C,∀i = 1, ..., k

(5)
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Why using l1-norm as sparsity penalty

Although the most direct measure of sparsity is l0-norm, it’s
non-differentiable and difficult to optimize in general.
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Sparse Coding vs K-means

K-means:

min
U,V

n∑
j=1

∥∥∥x(j) − u(j)V
∥∥∥2
2

s.t.
∥∥∥u(j)

∥∥∥
0

= 1 (6)
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Sparse Coding vs Compressive Sensing

QDa = Qx⇒ D̃a = x̃
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An Example of Neural Network
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Sparse Auto-Encoders [Ranzato et al., NIPS 2006]

J(W, b) =

[
1

m

m∑
i=1

(
1

2

∥∥∥hW,b(x(i))− x(i)∥∥∥2)
]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )2 + β

s2∑
j=1

KL(ρ||ρ̂j)
(7)

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(8)

where ρ is a sparsity parameter, which specifies our desired level of
sparsity, typically a small value close to zero.

ρ̂j =
1

m

m∑
i=1

[a
(2)
j (x(i))] (9)
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Auto-Encoders vs PCA [Japkowicz et al., NECO 2000]

Nonlinear autoencoder is not equivalent to PCA

Linear autoencoders emulate PCA and thus exhibit a flat or unimodal
reconstruction error surface

Autoencoders with nonlinearities in their hidden layer learn domains
by building error reconstruction surfaces that, depending on the task,
contain multiple local valleys.

Nonlinear autoencoders can represent appropriate classifications of
nonlinear multi-modal domains, in contrast to linear autoencoders
which are inappropriate for such tasks.
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Energy-Based Models [LeCun et al., 2006]

Energy-Based Models (EBMs) capture dependencies between variables by
associating a scalar energy to each configuration of the variables.
Two tasks:

Inference consists in setting the value of observed variables and finding
configurations of the hidden variables that minimize the energy.

Learning consists in finding an energy function in which observed
configurations of the variables are given lower energies than hidden
ones.

Any probability distribution can be cast as an energy-based model.
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Energy-Based Models (Cont’)
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Energy-Based Models (Cont’)

Define a probability distribution through an energy function:

p(x) =
eE(x)

Z
(10)

where Z =
∑

x e
−E(x) is called the partition function.

Negative log-likelihood loss:

l(θ,D) = −L(θ,D) = − 1

N

∑
x(i)∈D

logp(x(i)) (11)

∆ =
∂l(θ,D)

∂θ
= − 1

N

∂
∑
logp(x(i))

∂θ
(12)
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Introducing Hidden Variables

Consider an observed part x and a hidden part h,

P (x) =
∑

h
P (x, h) =

∑
h

e−E(x,h)

Z
(13)

Introduce the notation of free energy,

F (x) = −log
∑

h
e−E(x,h) (14)

P (x) =
e−F (x)

Z
(15)

where Z =
∑

x e
−F (x).
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Negative log-likelihood gradient:

∆ = −∂logp(x)

∂θ
= −∂(−F (x)− logZ)

∂θ
=
∂F (x)

∂θ
−
∑
x̂

p(x̂)
∂F (x̂)

∂θ
(16)

Positive phase: The first term increases the probability of training data
(by reducing the corresponding free energy).
Negative phase: The second term decreases the probability of samples
generated by the model.

It is usually difficult to determine this gradient analytically, as it involves

the computation of EP
[
∂F (x)
∂θ

]
. This is nothing less than an expectation

over all possible configurations of the input (under the distribution P
formed by the model).
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Boltzmann Machines vs Restricted Boltzmann Machines

BMs are a particular type of EBMs with hidden variables, and RBMs are a
special form of BMs without visible-visible and hidden-hidden connections.

BMs[Ackley et al., CSJ 1985]: RBMs[Hinton, NECO 2002]
(Harmonium [Smolensky, 1986]):
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Boltzmann Machines [Ackley et al., CSJ 1985]

Energy function:

Energy(v, h) = −b′v − c′h− h′Wv − v′Hv − h′V h (17)

Two types of parameters: the offsets bi and ci (each associated with a
single element of the vector v or h), and the wights Wij , Hij and Vij
(each associated with a pair of units).

Negative log-likelihood gradient:

∆ = −∂ logP (v)

∂θ
= −

∂ log
∑

h e
−Energy(v,h)

∂θ
+
∂ log

∑
ṽ,h e

−Energy(ṽ,h)

∂θ

=
∑

h
P (h|v)

∂Energy(v, h)

∂θ
−
∑

ṽ,h
P (ṽ, h|v)

∂Energy(ṽ, h)

∂θ
(18)
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Restricted Boltzmann Machines [Hinton, NECO 2002]

Energy(v, h) = −b′v − c′h− h′Wv (19)

F (v) = −b′v −
∑

i
log
∑

hi
ehi(ci+Wiv) (20)

visible and hidden units are conditionally independent.

p(h|v) =
∏

i
p(hi|v) (21)

p(v|h) =
∏

j
p(vj |h) (22)

RBMs can represent any discrete distribution if enough hiddern units are
used. [Roux and Bengio, NECO 2008]
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Learning RBMs

Contrastive Divergence [Hinton, NECO 2002]

Initialize the Markov chain with a training example;

Samples are obtained after only 1-step of Gibbs sampling.

vi = x, hi ∼ P (h|vi), vi+1 ∼ P (v|hi), hi+1 ∼ P (h|vi+1)

∆W = P (hi|vi)v′i − P (hi+1|vi+1)v
′
i+1 (23)

∆b = vi − vi+1 (24)

∆c = P (hi|vi)− P (hi+1|vi+1) (25)
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Binary-Binary RBMs [Hinton, NECO 2002]

In the commonly studied case of using binary units (where vj and hi
∈ {0, 1}):

p(hi = 1|v) = sigm(ci +Wiv) (26)

p(vj = 1|h) = sigm(bj +W ′jh) (27)

F (v) = −b′v −
∑

i
log(1 + eci+Wiv) (28)

− ∂logp(v)

∂Wij
= Ev[p(hi|v)vj ]− v(i)j sigm(Wiv

(i) + ci) (29)

− ∂logp(v)

∂ci
= Ev[p(hi|v)vj ]− sigm(Wiv

(i)) (30)

− ∂logp(v)

∂bj
= Ev[p(hi|v)vj ]− v(i)j (31)
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Variants of RBMs

v and h (given the other) in RBMs
can be in any of the exponential
family distribution. [Welling et al.,
NIPS 2004]

Binary-Gaussian RBMs [Welling
et al., NIPS 2004]

Gaussian-Binary RBMs [Welling
et al., NIPS 2004]

Gaussian-Gaussian RBMs
[Marks and Movellan, ICA 2001]

Replicated Softmax
[Salakhutdinov and Hinton,
NIPS 2009]

Rate-coded RBMs [Teh and
Hinton, NIPS 2001]

Lateral Connections [Osindero
and Hinton, NIPS 2007]

Conditional RBMs [Taylor and
Hinton, ICML 2009;
Salakhutdinov et al., ICML
2007]

Temporal RBMs [Sutskever and
Hinton, AISTATS 2007]

Factored RBMs [Mnih and
Hinton, ICML 2007]

Sparse RBMs [Lee et al., NIPS
2007]

Classification RBMs [Larochelle
et al., JMLR 2012]
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Gaussian-Binary RBMs [Welling et al., NIPS 2004]

Gaussian-Bernoulli RBMs (v ∈ RI , h ∈ {0, 1}J):

Energy(v, h) =
1

2
(v − b)′(v − b)− c′h− v′Wh (32)

P (v|h) ∝ exp(−1

2
v′v + v′(b+Wh)) (33)

P (hj = 1|v) = sigm(cj + v′W·j) (34)
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Replicated Softmax [Salakhutdinov and Hinton, NIPS
2009]

Categorical RBMs: using a 1-of-C encoding for categorical visible
variables.

A softmax can be viewed as a set of binary units whose states are
mutually constrained so that exactly one of the C states has value 1 and
the rest have value 0.

The learning rule for the binary units in a softmax is identical to the rule
for standard binary units.

pj =
exj∑C
i=1 e

xi
(35)
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Conditional RBMs [Salakhutdinov et al., ICML 2007]

r ∈ {0, 1}M , indicating rated/unrated movies, affects binary states of the
hidden units. D is a learned matrix that models the effect of r on h.

P (vki = 1|h) =
exp(bki +

∑F
j=1 hjW

k
ij)∑K

l=1 exp(bli +
∑F

j=1 hjW
l
ij)

(36)

P (hj = 1|v, r) = sigm(bj +

m∑
i=1

K∑
k=1

vkiW
k
ij +

M∑
i=1

rijDij) (37)
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Sparse RBMs [Lee et al., NIPS 2007]

min
{wij ,ci,bj}

−
m∑
l=1

log
∑
h

P (v(l), h(l))+λ

n∑
j=1

∣∣∣∣∣ρ− 1

m

m∑
l=1

E
[
h
(l)
j |v

(l)
]∣∣∣∣∣

2

(38)
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Deep Boltzmann Machines vs Deep Belief Networks

DBM [Salakhutdinov and Hinton,
AISTATS 2009]:

DBN [Hinton et al., NECO 2006]:
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A Neural Probabilistic Language Model [Bengio et al.,
JMLR 2003]

Learn a distributed representation for words which learns simultaneously a
distributed representation for each word along with the probability function
for word sequences, expressed in terms of these representations.
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Three New Graphical Models for Statistical Language
Modelling [Mnih and Hinton, ICML 2007]

Propose three new probabilistic language models (Factored RBM,
Temporal Factored RBM and Log-Bilinear) that define the distribution
of the next word in a sequence given several preceding words by using
distributed representations of those words.
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Restricted Boltzmann Machines for Collaborative Filtering
[Salakhutdinov et al., ICML 2007]

Show how RBMs can be used to model tabular data, such as user’s ratings
of movies and propose Conditional Factored RBMs.
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Replicated Softmax: an Undirected Topic Model
[Salakhutdinov and Hinton, NIPS 2009]

Two-layer undirected graphical model (Replicated Softmax): the top
layer represents a vector of stochastic, binary topic features and the
bottom layer represents softmax visible units. All visible units share the
same set of weights, connecting them to binary hidden units.
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Learning Sentence Representation for Emotion
Classification on Microblogs [Tang et al., NLP&CC 2013]

Learn the sentence representation through Deep Belief Network
algorithm;
Incorporate the Deep Belief Network based representation into basic
features.
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Modeling Documents with a Deep Boltzmann Machine
[Srivastava et al., UAI 2013]

Over-Replicated Softmax: the bottom layer represents softmax visible
units, the middle layer represents binary latent topics, the top layer
represents softmax hidden units. All visible and hidden softmax units share
the same set of weights, connecting them to binary hidden units.
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