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Granularity of Feature
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Shallow Feature
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Learning feature hierarchies
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Topic Modelling
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Signal Processing

Nyquist-Shannon Sampling Theorem

fs ≥ 2B (1)

Compressed Sensing
A paradigm shift that allows for the saving of time and space during
the process of signal acquisition, while still allowing near perfect
signal recovery when the signal is needed.
It is possible to fully recover a signal from sampling points much
fewer than that defined by the above sampling theorem.
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Compressed Sensing

Given x of length N , only M measurements (M < N) is required to fully
recover x when x is K-sparse (K < M < N).

Three essential criteria:

Sparsity

Incoherence

Non-linear Reconstruction

The number of significant (strictly speaking, nonzero) components is
relatively small compared to signal length.
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Sparsity Representation

`p-Norm: ‖x‖p =
(

N∑
i=1
|xi|p

) 1
p

`0-norm counts the number of non-zero components of x.
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Sparse Modelling

min
D,αj

M∑
j=1

‖Dαj − xj‖22 s.t. ‖αj‖0 < T (2)
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Uniqueness

D and x are known,

min
α
‖α‖0 s.t. x = Dα (3)

Spark: σ = Spark(D) is the smallest number of columns that are linearly
dependent.

e.g.


1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

, σ = 3.

If we found a representation that satisfy σ
2 > ‖α‖0, then necessarily it is

unique (the sparsest).
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Sparse Coding

Problem Setting:

min
α
‖α‖0 s.t. ‖Dα− x‖22 ≤ ε

2 (4)

Greedy Methods - Matching Pursuit (MP)

Relaxation Methods - the Basis Pursuit (BP)

min
α
‖α‖1 s.t. ‖Dα− x‖2 ≤ ε (5)
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Dictionary Learning

K-SVD:
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Basic Autoencoder

x ∈ [0, 1]d, y ∈ [0, 1]d
′
, z ∈ [0, 1]d
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Basic Autoencoder (Cont’)

y = fθ(x) = s(Wx+ b), z = gθ′(y) = s(W′y + b′)

θ∗, θ′∗ = argmin
θ,θ′

1

m

m∑
i=1

L(x(i), z(i)) (6)

where L is a loss function such as squared error L(x, z) = ‖x− z‖2. An
alternative loss is reconstruction cross-entropy:

LH(x, z) = H(Bx||Bz) = −
d∑

k=1

[xk log zk + (1− xk) log(1− zk)] (7)

θ∗, θ′∗ = argmin
θ,θ′

Eq0(X)[LH(X, gθ′(fθ(X)))] (8)
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Regularized Auto-Encoders

The simplest form of regularization is
weight-decay which favors small weights.
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Sparse Auto-Encoders
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Sparse Auto-Encoders (Cont’)

Jsparse(W,b) = J(W,b) + β

s2∑
j=1

KL(ρ||ρ̂j) (9)

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log 1− ρ

1− ρ̂j
(10)

where ρ is a sparsity parameter, which specifies our desired level of
sparsity, typically a small value close to zero (say ρ = 0.05).

ρ̂j =
1

m

m∑
i=1

[a
(2)
j (x(i))] (11)

If ρ̂j is close to ρ, the hidden unit’s activations must mostly be near 0.
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Denoising Auto-Encoders

x̃ ∼ qD(x̃|x), the stochastic corruption process consists in randomly
setting some of the inputs (as many of half on them) to zero.
y = fθ(x̃) = s(Wx̃+ b), z = gθ′(y) = s(W′y + b′)

Zhifei Zhang (Tongji Univ.) Variants of Auto-Encoders Nov. 20, 2013 23 / 35



Feature Sparsity Auto-Encoders Variants of Auto-Encoders Applications in NLP

Denoising Auto-Encoders (Cont’)

q0(X, X̃) = q0(X)qD(X̃|X)δfθ(X̃)(Y) (12)

where δu(v) puts mass 0 when u 6= v.

θ∗, θ′∗ = argmin
θ,θ′

Eq0(X,X̃)[LH(X, gθ′(fθ(X̃)))] (13)

Manifold learning perspective:
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Contractive Auto-Encoders

If input x is mapped by encoding function f to hidden representation h,
this sensitivity penalization term is the sum of squares of all partial
derivatives of the extracted features with respect to input dimensions:

‖Jf (x)‖2F =
∑
ij

(
∂hj(x)

∂xi

)2

(14)

which encourages the mapping to the feature space to be contractive in
the neighborhood of the training data.
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Contractive Auto-Encoders (Cont’)

JCAE(θ, θ
′) =

∑
x∈D

(L(x, gθ′(fθ(x))) + λ ‖Jf (x)‖2F ) (15)

In the case of a sigmoid nonlinearity, the penalty on the Jacobian norm has
the following simple expression:

‖Jf (x)‖2F =

d′∑
i=1

(hi(1− hi))2
d∑
j=1

W 2
ij (16)
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Relationship

In the case of a linear encoder (i.e. when f is the identity function),
CAEs and AEs+wd are identical.

Sparse Auto-Encoders that output many close-to-zero features, are
likely to correspond to a highly contractive mapping.

Robustness to input perturbations was also one of the motivation of
the denoising auto-encoder. CAEs explicitly encourage robustness of
representation, whereas DAEs encourages robustness of
reconstruction.
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Saturating Auto-Encoders

A simple new regularizer for auto-encoders which encourages activations in
the saturated regions of the corresponding activation function.
The auto-encoder function is defined as:

G(x,W) = W′F (Wx+ b) + b′ (17)

L =
∑
x∈D

1

2

∥∥x− (W′F (Wx+ b) + b′)
∥∥2 + λ

d′∑
i=1

fc(Wix+ bi) (18)

where F is the vector function that applies the scalar function f to each of
its components. f will be designed to have the saturation regions.

fc(z) = inf
z′∈{z|f ′(z)=0}

∣∣z − z′∣∣ (19)

fc(z) corresponds to the distance of z to one of the flat spots of f(z).
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Relationship

The following equation adjusts the weights so as to push the
activations into the low gradient (saturation) regions. CAEs indirectly
encourage operation in the saturation regions.

∑
ij

(
∂hi
∂xj

)2

=

d′∑
i=1

f ′( d∑
j=1

Wijxj + bi)
2 ‖Wi‖2

 (20)

The shrink function is particularly compatible with `1 minimization.
SATAEs are a generalization of sparse auto-encoders.

shrinkc(x) =

{
abs(x) |x| > τ

0 elsewhere
(21)
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Chinese Word Segmentation

Text Window Denoising Autoencoder: Building Deep Architecture for
Chinese Word Segmentation (Wu et al., NLP&CC 2013)
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Semantic Indexing

Dynamic Auto-Encoders for Semantic Indexing (Mirowski et al., NIPS
Workshop 2010)
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Sentiment Analysis

Semi-Supervised Recursive Autoencoders for Predicting Sentiment
Distributions (Socher et al., EMNLP 2011)
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